Algebraic Independence of Carlitz Zeta Values with Varying Constant Fields

نویسندگان

  • CHIEH-YU CHANG
  • MATTHEW A. PAPANIKOLAS
  • JING YU
چکیده

As an analogue to special values at positive integers of the Riemann zeta function, for each constant field Fpr with fixed characteristic p we consider Carlitz zeta values ζr(n) at positive integers n. The main theorem of this paper asserts that among the families of Carlitz zeta values ∪∞ r=1 {ζr(1), ζr(2), ζr(3), . . . }, all the algebraic relations are those algebraic relations among each individual family {ζr(1), ζr(2), ζr(3), . . . }, r = 1, 2, 3, . . . .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frobenius Difference Equations and Algebraic Independence of Zeta Values in Positive Equal Characteristic

In analogy with the Riemann zeta function at positive integers, for each finite field Fpr with fixed characteristic p we consider Carlitz zeta values ζr(n) at positive integers n. Our theorem asserts that among the zeta values in ∪∞ r=1 {ζr(1), ζr(2), ζr(3), . . . }, all the algebraic relations are those relations within each individual family {ζr(1), ζr(2), ζr(3), . . . }. These are the algebr...

متن کامل

Algebraic Independence of Arithmetic Gamma Values and Carlitz Zeta Values

We consider the values at proper fractions of the arithmetic gamma function and the values at positive integers of the zeta function for Fq [θ] and provide complete algebraic independence results for them.

متن کامل

Transcendence in Positive Characteristic

1. Table of symbols 2 2. Transcendence for Drinfeld modules 2 2.1. Wade’s results 2 2.2. Drinfeld modules 3 2.3. The Weierstraß-Drinfeld correspondence 3 2.4. Carlitz 5 2.5. Yu’s work 6 3. t-Modules 7 3.1. Definitions 7 3.2. Yu’s sub-t-module theorem 8 3.3. Yu’s version of Baker’s theorem 8 3.4. Proof of Baker-Yu 8 3.5. Quasi-periodic functions 9 3.6. Derivatives and linear independence 12 3.7....

متن کامل

Determination of Algebraic Relations among Special Zeta Values in Positive Characteristic

As analogue to special values at positive integers of the Riemann zeta function, we consider Carlitz zeta values ζC(n) at positive integers n. By constructing t-motives after Papanikolas, we prove that the only algebraic relations among these characteristic p zeta values are those coming from the Euler-Carlitz relations and the Frobenius p-th power relations.

متن کامل

ALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)

We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009